この記事では、そのコンテンツの球 表面積 の 求め 方について明確にします。 球 表面積 の 求め 方を探している場合は、この球の体積、表面積 中学生にも納得のいく方法で。 積分でも出しますの記事でこの球 表面積 の 求め 方についてShibaHirokazuを探りましょう。

球の体積、表面積 中学生にも納得のいく方法で。 積分でも出しますの球 表面積 の 求め 方に関連するビデオの概要

下のビデオを今すぐ見る

続きを見る  【フーリエ解析04】離散フーリエ変換(DFT)って何?FFTを知るために! | フーリエ 変換 導出に関する最も正確な知識の概要

このShiba Hirokazu Webサイトでは、球 表面積 の 求め 方以外の他の情報を追加して、より有用なデータを自分で提供できます。 Shiba Hirokazuページで、私たちは常にユーザー向けに毎日新しい正確なコンテンツを公開します、 あなたのために最も正確な知識を提供したいと思っています。 ユーザーが最も詳細な方法でインターネット上の知識を更新することができます。

球 表面積 の 求め 方に関連するいくつかの内容

球体の体積と表面積は、統合の科学がまだ発達していなかった 2000 年以上前にアルキメデスによって発見されました。 積分の説明は最後で、小中学生にも納得のいく説明です。 連絡先: kantaro@momo.so-net.ne.jp Twitter おすすめ動画 自然対数の底 e ネイピア数について、東大の美人コンビと早稲田を中退した文系コンビが本気で語る。 もっちゃんでバーゼル問題を解決! eの本質 ➡ バーゼル問題 ➡ 自然数の2乗の逆数の和 ➡ 完全数の話 ➡ 中学知識でオイラーの公式を理解しよう ➡ 自然数の4乗の逆数の和 ➡ 奇数の2乗の逆数の和➡ e の本質 ➡ Why 0! = 1 ➡ 積分が面積を与える理由 → ブログ ➡ 「家族で行こう!自転車旅」 円とは関係ないのに結論にπが出てくる 積の微分、合成関数の微分、商の微分 ➡中学生の知識でオイラーの公式を理解しよう➡戦いは対等か? (類似)東大入試問題➡ブログ➡「家族で自転車旅に出よう!」

続きを見る  【物理の授業を10分で】#76 半減期【原子】 | 関連ドキュメントの概要半減 期 式

一部の画像は球 表面積 の 求め 方に関する情報に関連しています

球の体積、表面積 中学生にも納得のいく方法で。 積分でも出します
球の体積、表面積 中学生にも納得のいく方法で。 積分でも出します

追跡している球の体積、表面積 中学生にも納得のいく方法で。 積分でも出しますのコンテンツを探索することに加えて、ShibaHirokazuが継続的に公開する他のコンテンツを調べることができます。

最新情報を表示するにはここをクリック

球 表面積 の 求め 方に関連するいくつかの提案

#球の体積表面積中学生にも納得のいく方法で #積分でも出します。

球、体積、表面積、積分、アルキメデス,数学 高校数学 三角関数 対数 微分 積分 漸化式 東大 早稲田 京大 医学部 東北大 大阪大 数1 数2 数A 数B 数3 確率 鈴木貫太郎 慶応 上智 整数 数列 素数 自然対数 北海道大。

続きを見る  反転増幅回路を解説【オペアンプ】 | オペアンプ イマジ ナリー ショートに関する情報を最も詳細に説明します

球の体積、表面積 中学生にも納得のいく方法で。 積分でも出します。

球 表面積 の 求め 方。

ShibaHirokazuが提供する球 表面積 の 求め 方の知識を持って、あなたにそれがあなたに価値をもたらすことを望んで、あなたがより多くの情報と新しい知識を持っているのを助けることを願っています。。 shiba-hirokazu.comによる球 表面積 の 求め 方に関する記事をご覧いただきありがとうございます。

50 thoughts on “球の体積、表面積 中学生にも納得のいく方法で。 積分でも出します | 球 表面積 の 求め 方に関するすべての文書が最も正確です

  1. saki jin says:

    鈴木先生、こんにちわ。 いつも楽しく拝聴しております。

     私は最新の動画を楽しみつつも、何故か3~4年前くらいの動画もついつい見てしまいます。

    ちょっと薄暗い室内、壁に張り付いたホワイトボード、スーツ姿の鈴木先生・・・。

    言葉ではうまく説明できませんが、素朴・質素・愚直・・・といったことを最初に見た当時、感じました。

     私は子供といつも見ているのですが、数学の内容よりも「どうしてこんなに毎日続けられるのだろう?」、「こうやって続けていく人間のエネルギーって何だろう?」、「どんな動機がそのエネルギーになっているのだろう?」、「最初から4年後に14万人超の登録者数になると想定していたんだろうか?」、「本の出版とかオイラーの公式Tシャツ姿を想定していたんだろうか?」、「(ほとんど)数学の内容だけで続けていけるってどうやって確信できたんだろう? どんな信念があったんだろう?」など等、鈴木先生のエネルギーに関する話しで盛りあがることが殆どです。何回もこの頃の動画を見て、何回も同じような問いを親子で話し合っています。

     実は私も子供もあまり数学は得意ではなく、どちらかというと鈴木先生の講義を単に聞くことや姿を見ることが視聴している目的のようなものです。もちろん、そこから面白さや学びになることは沢山あります。ですが、むしろ「淡々と継続して表現をし続ける人」への畏怖のようなものを抱き、感じることがより大きな意義のような気がしています。

     鈴木先生はそんなことを教示するために動画を作成されているわけではないのでしょうが、将来に何が待っているのか分らずとも淡々と日々数学だけを続けていく何か勇気のようなものを感じずにはいられません。そうです、生きる勇気としか表現する単語を思いつきません。恐らくそのような不思議な魅力が当時の動画にあるように思えます。

     娘は今、高校2年生ですがお陰様で旧帝国大学の文系数学の半分程度は、なんとか解けるようになりました。国語・英語・社会は得意科目なので、二次試験はそこそこ目処が立ちそうです。私が甲斐性無しな者で、ロクに学習塾にも通わせてやれないままで終わりそうですが、努力を続ける意義のようなものもこちらが勝手に鈴木先生のお姿から学んだような気がして、中学生の頃から視聴し続けて良かったと思っています。

     感謝申し上げます。ありがとうございました。

    オイラーの公式 2017/07/07 UPからまもなく4年になろうとしています。

    これからも楽しい動画作成を続けていかれることを願って已みません。

  2. ねこねこ55 says:

    高校時代にこういう動画を普通に見られたらもう少し授業も楽しく感じられたでしょうね。
    数学は本当に面白いと思います。
    大人になってから学び直すと特にそれを感じます。
    先生どうもありがとうございます😊。

  3. ri rima says:

    これは分かりやすいですね。
    丸暗記ではなく、学校でもこの解説方法で勉強を教えてもらいたいと思いました。
    ワクワクする授業で、学びが楽しくなります。
    中学生の子どもに教えたいと思います。いつもありがとうございます。

  4. 永田俊夫 says:

    円柱に内接する球、円錐の体積比が綺麗な比例になることを知り、数学の面白さを感じました。

  5. Akiyoshi SkyMonkey says:

    錐の体積は柱の体積に1/3を掛ける理由を思いついた時、嬉しかったのを思い出す。
    球の体積はこういう風に考えた事なかったから勉強になるな

  6. sakakkied X says:

    立体は断面の集合体で、2立体の各同レベル断面が常に同面積なら2体積も一緒
    このイメージはまさに定積分のそれですよね

  7. アンとマリオ says:

    わかりやすい動画ありがとうございます。一点よくわからなかったのですが、 09:26あたりで、三角柱を上の頂点二つと下の頂点を通るような平面で切るくだりがありますが、切り取られた方は三角錐になりますが、残った方は三角錐にはならないので同じ体積のものが結果三つできるというところがよくわかりませんでした。
    ここ最初から二つの平面で切って三つの錐ができるけど、実はこの三つは同じ体積になるという理解で大丈夫ですかね?なぜその二平面できる事を思いつけるのかが子供には引っかかりそうですが。

  8. Kenji H says:

    球の表面積の公式自体は算数が得意な子なら小学生も知っているし、私もそんな小生意気なクソガキの一人だった。

    しかし自分でそれを導こうとすると、かなりの難問だったのを覚えている。

    微小な扇形に分割して円の面積を導く手法を、球に拡張しようとするのは自然なことなのだが

    地球儀に貼ってある小さな扇形(三角)の面積を考えると、底辺の合計は2πr高さはπr/2・・・
     

    そうやって球の表面積を求めようとすると・・・困ったことに球の表面積=π^2r^2になってしまうのである。
    リスナー諸兄は、その計算方法のどこに誤りがあるのかお気づきだろうか?

  9. 阿部充宏 says:

    4πr2乗 4x2rπ 4分2r3,14 2分r1、57 球の表面積の求め方の1番簡単だと思われる    3分4πr3乗 3分4x4rπ 3分16rπ 分毋が奇数 分子が偶数なのでこれが一番簡単な式
    2a x2bxbとゆう数式は2(a+b2) bは偶数になるので矛盾が起きるゆえに数式は a2乗Xb2乗xb あるので2(axb)b一番簡単な式であると思われる

  10. nullpoex7 says:

    え、みんなわかるの?
    おっさんだけど、積分のも積分使わないのも、両方よくわからなかった。。。

  11. h Ishi says:

    数学は公式ではなく、公式を導き出す考え方なんですよね。
    高校の時、線は点の総和、面は線の総和、体積は面の総和と教わりましたか、次元を一つ上げた総和を考えろ!と教わりました。
    わかる人はわかるけど、沈んでいく人は数学が嫌いになってましたね。(笑)
    このように教われば、ほとんどの人は数学が嫌いにならなかったでしょう。

  12. k says:

    体積なのに2乗使うのはおかしい
    3乗もしたのにさらに4もかけたら値が大きくなりすぎる
    という感覚を持っています。

  13. SA ・IKO says:

    わかりやすい,成る程・・・、もう忘れた・・・何度も見て暗記・・・・・何に使う?・・・・
    孫の質問の為・・・孫は高校に入ってる・・・!!、  
    しかし算数や数学って面白いもんだ、答えが一つだから・・・、習った記憶無い、
    公式暗記で受験、数年たつと身の上心配有る事情となる・・・駄目だこりゃ

  14. m475_m475 says:

    このヒト凄すぎる。
    球に関する定数をも、何故そうなるのか説明してしまう。
    .
    こういうセンセを物理的にcopyして
    全国の(公立)ガッコに配りたい(笑)です
    .
    逆にドハズレのセンセを除去できる法律欲しいです。
    厳しすぎますか?.
    公立だと、特にそう思います。(地方だと特に)
    .

  15. anju * says:

    球を円錐の集合であると考えるとき、どれだけ錐の底面を小さくしてもちょっとずつ隙間が出来てしまわないんですか?そこが気になります。

  16. says:

    こりゃすげーや
    てか積分もない2000年以上前に球の体積求めたアルキメデスもすげーや

  17. 𝔜 says:

    なぜそうなるのかずっと考えていました〜!わかりやすい説明ありがとうございます!

  18. すぶりをするそぶり says:

    中高のときは、わりとロジックで覚えてたな。平面だから二乗とか立体だから三乗とか
    よく考えたら丸暗記したことないわ。

  19. N H says:

    これは他の人にも広めたい動画ですね。
    中学生でもわかる方で球の体積、表面積がでたときは感動物でした。

  20. かなt says:

    中一の時先生に理由教えて貰ってまじ納得したの思い出した
    その理由うろ覚えやけど

  21. なかむらっこ says:

    こんばんは(^-^)/
    YouTubeでこちらの動画のお知らせを拝見し、受講しました。
    教科書が基本なのは、理解してますが、僕はその教科書が読みづらいです。自分が分からないことを、理解できるように説明して下さる先生の動画を、繰り返し受講できるのは、幸せなことだと思います。
    👍️いたしました。

  22. swordone says:

    私がこれ習った頃、積分という言葉は出なかったにせよ、こういう話は教科書にちゃんと載っていたと記憶してますが…

  23. 中村貴代 says:

    中学になって最初の夏休みの数学の課題はこれにします!!w分かりやすい説明でありがとうございました!!!

  24. Yoshiaki Ueno says:

    正 2 n 角形を1つの対角線に関して回転してできる回転体の体積は円錐台の側面積の和から 4 π r^2 cos(π/(2n)) と計算できます。ここで n →無限大とすれば 4 π r^2 となります。これには円周角定理をつかった巧みな計算があり、オイラーによるものらしいです。

  25. alexander mahone says:

    半球と逆円錐の体積が円柱と等しくなるってとこで「かしこ…」って声出た

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です